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ABSTRACT

The mechanism of thermal decomposition of aluminum sulfate has been
investigated in the 500-700 °C temperature range using a flow reactor system
with the emitted gaseous sulfur oxides collected in a Gokseyr—Ross coil and
a hydrogen peroxide impinger. Sulfur trioxide (SO;) was found to be the
primary sulfur oxide released during thermal decomposition (1).

Alz(SO4)3 - A1203 +3SO3 (l)

Less than 3% of the released sulfur oxides were sulfur dioxide (SO;), indicat-
ing that the SOj; dissociation reaction (2) is slow relative to the residence time
of the SO; in the reactor ( ~1 sec).

SO, = S0, +10, ')

The experimental technique should be readily adaptable to the study of the
thermal decomposition of other metal sulfates.

INTRODUCTION

A number of recent reports have dealt with the thermal decomposition
of aluminium sulfate. These reports have included studies of the kinetics of
decomposition'™ and the composition of the evolved gases formed during ther-
mal decomposition®®. The latter studies involved attempts to identify the
gaseous thermal decomposition products by mass spectrum analyses and have
resulted in considerable controversy concerning the identity of the primary sul-
fur oxide involved in the decomposition reaction. The problem in all of these
studies arises from the ease of cracking of SOj; into the SO; fragment in the
ionization chamber of the mass spectrometer and therefore the difficulty of ob-
serving the SO, species or obtaining quantitative informztion on its concen-
tration compared to other sulfur oxide species which may be present.

Recent work in this laboratory on the sulfuric acid emissions from au-
tomotive catalysts has resulted in interest in the thermal decomposition of
aluminum sulfate; this interest arises from the importance of sulfur oxide sto-
rage and release reactions involving the alumina washcoat of automotive ca-
talysts. Sulfur trioxide formed over the catalyst can react with the alumina to
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form aluminum sulfate at low catalyst temperatures; at higher temperatures
the aluminum sulfate decomposes to release the sulfur oxides. Accordingly,
the mechanism of aluminum sulfate thermal decomposition has been inves-
tigated using a flow reactor system with the emitted gaseous sulfur oxides col-
lected in a Gokseyr-Ross coil” and a hydrogen peroxide impinger. The exper-
imental method allows unambiguous determination of the concentrations of
SO; and SO, formed during the dissociation reaction.

EXPERIMENTAL

The experimental apparatus used in this study is shown schematically in
Fig. 1 and is essentially the same as that used to study the SO, oxidation Kkin-
etics over automotive catalysts®. Previous work has shown that this technique
does not lead to spurious formation of SO, in the experimental apparatus®. A
gas mixture is humidified and preheated in the first oven and then passed
over a quartz boat containing aluminum sulfate in the reactor oven. As the
gas leaves the reactor oven, it passes through a Gokseyr-Ross coil’ which is
maintained at 70-75 °C. This temperature is below the dew point of sulfuric
acid and above that for water. Sulfuric acid selectively condenses in the Goks-
oyr—Ross coil while the other gases pass through. Sulfur dioxide is collected
from the gas stream by oxidation to sulfate in a hydrogen peroxide impinger
(3% H;0;) downstream of the Gokseyr-Ross coil. The amounts of SO; and
SO, released during the decomposition experimients are determined by batch
sulfate analyses of the Gokseyr-Ross and impinger samples, respectively. The
sulfate determinations are done by barium perchlorate titration with Thorm n-
dicator using photometric endpoint detection”®.

Baker Analyzed Reagent aluminum sulfate (dried powder) was used for
all decomposition experiments. The flow reactor gas mixture was either (1)
10% H,O and 90% N; or (2) 5% O,, 10% H,0, and 85% N, by volume. The
presence of water in the flow reactor system is dictated by the necessity for
the released SO, to form sulfuric acid as the gas cools upon leaving the flow
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Fig 1. Experimental apparatus. I = Gas infet; 2 = water inlet; 3 = humidifier oven: 4 = quariz
reaction inbe; 5 = reactor oven; 6 = sample container; 7 = Gokseyr-Ross coil; 8 = HyO,
impinger; 9 = gas exhaust.
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reactor; the Gokseyr—Ross coil will not trap SO; which is in the gas phase.
Decomposition studies under anhydrous conditions may be performed by in-
jecting the water downstream of the reactor zone.

The gas flow-rates for all experiments were ~5.01min~".

RESULTS AND DISCUSSION

The thermal decomposition of aluminum sulfate in the flow reactor in
the temperature range 500-700 °C resulted in the sulfur oxide gas composi-
tions shown in Table 1. The results in Table 1 are presented as the molar con-
centration ratio between the SO; emitted and the sum of the SO; and SO,

TABLE 1

THE RATIO OF THE MOLAR CONCENTRATIONS OF SO; EMITTED OVER THE SUM OF
THE SO; AND SO, EMITTED (%) DURING THE THERMAL DECOMPOSITION OF
ALUMINUM SULFATE

Temp. °C) With oxygen® Without oxygen®
500 9% 98 %

600 9% 97%

700 97% —

® Gas composition 5% Oy, 10% H,, and 85% N;. ®Gas composition 10% H,0 and 90% N;.

emitted during decomposition. In the 500-700 °C temperature range, virtually
all of the emitted sulfur oxide is in the form of SO; and thus provides con-
clusive evidence that this is the primary gaseous species involved in the ther-
mal decomposition of aluminum sulfate and supports the following mechan-
ism (1):

AL(SO,); = ALLO; +3S0; [6))

The very small amounts of SO, observed, especially the small amounts
observed in the absence of oxygen, indicate that the SC; dissociation reaction
(2) is not taking place to a significant extent in the time scale of the exper-
iment.

SO, = SO, +310, [0}

The residence time of the SO; in the reactor is ~1 sec. These results indicate
that the large amounts of SO, found in mass spectrometer studies®* are either
due to much longer SO; residence times in the reactor systems or to cracking
of SO; in the ionization chamber of the mass spectrometer.

The experimental techniques described here are readily adaptable to the
study of a wide range of metal sulfate thermal decompositions. In addition to
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ﬁ_a\foidirlg the,ptob_letﬂ of SO,[SO;’ ‘measurements in “nia‘ss"sbectrometervstudies,'
the technique allows for decomposition studies under different gaseous atmos-
pheres. B : : - S
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